Nanowire arrays interfaced with biological cells have been demonstrated to be potent tools for advanced applications such as sensing, stimulation, or drug delivery. This study published in Advanced Materials Interfaces demonstrates the generation of functional human iPSC-derived neurons on nanowire arrays with varying geometrical specifications. The cell/nanowire interactions range from fakir-like states to nanowire-encapsulating states depending on the array characteristics. The neurons are functional with similar kinetics of the action potentials highlighting the equivalence of the nanowire arrays for neuronal differentiation.